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Forms of Approximate Radiation Transport

Thomas A. Brunner

Sandia National Laboratories Albuquerque, New Mexico 87185-1186

Photon radiation transport is described by the Boltzmann equation. Because
this equation is difficult to solve, many different approximate forms have been
implemented in computer codes. Several of the most common approximations
are reviewed, and test problems illustrate the fundamental characteristics of
each approximation.

Introduction

The Boltzmann transport equation describes how a variety of different types of
particles travel through a material. It is generally considered the most accurate description
of the statistical average density of particles in a system, as long as the particles do not
interact with themselves. In radiation transport, the photon interactions with material can
be described by a coupled set of equations(Pomraning, 1973; Zel’dovich and Raizer,
2002), namely

1

c

∂I

∂t
+ Ω ·∇I = σa(B(Tm)− I) (1)

∂um

∂t
= −

∫
4π

σa(B(Tm)− I) dΩ + Qm (2)

whereI(x,Ω, t) is the intensity,ν is the frequency of the particles,Ω is the direction of
the particle travel,t is time,σa is the absorption opacity,um is the material energy density,
Tm(um) is the material temperature and is a function of the material energy,Qm is an
external source of material heating, andB(Tm) is Plank’s function. The one group, or
gray, approximation has been assumed for simplicity.

The intensityI contains much more detailed information than is frequently needed to
solve a particular problem. In fact, the coupling with the material in Eq. 2 is only through
the integral ofI over all angles. We can define the radiation energy density as

E =
1

c

∫
4π

I dΩ . (3)

Equations 1 and 2 form a nonlinear system, even if the material properties are
constant. They can be quite difficult to solve, and an approximation to Eq. 1 is nearly

Brunner, T.A. 1



Proceedings from the 5LC 2005

always made before solving the system. This paper reviews several of the most popular
approximations used in the radiation transport community.

The Approximations

Equations 1 and 2 form a nonlinear system. They can be quite difficult to solve, and an
approximation to Eq. 1 is nearly always made before solving the system. This paper
reviews four of the most popular approximations used in the radiation transport
community.

The diffusion equation is very easy to solve but is inaccurate in optically thin regions
and where the gradient of the energy density is large. Flux limited diffusion is an
improvement to fix these deficiencies at the cost of making the equations nonlinear.
Diffusion andP1 are very closely related; variable Eddington factor approximations are a
nonlinear improvement upon theP1 approximation, much in the same way that flux
limited diffusion improves upon regular diffusion.

The equations that arise in the discrete ordinates (SN ) approximation are also very
easy to solve, especially in serial calculations. Recent work has gone into makingSN

work on unstructured meshes in parallel. The most severe problem thatSN has is the
inclusion of artifacts in the solution called ray effects.

The spherical harmonics approximation (PN ) has been around for a long time, but has
not gotten much use in large codes. WhileSN suffers from ray effects,PN suffers from
wave effects in time dependent problems

Monte Carlo is not an approximation of the transport equation. While the transport
equation describes the statistical average of the particles in the system, Monte Carlo
methods try to build up an average by simulating many individual particles. Because it is
infeasible to simulate as many particles as there are in the physical system, the accuracy of
the solution is usually limited by computer time and memory.

Only the Boltzmann equation, Eq. 1, is being approximated in all these methods; the
material energy equation, Eq. 2, is unchanged.

Diffusion

For many problems, only the energy densityE is important. In fact, it is this quantity
that shows up in Eq. 2. Instead of solving forI directly and then integrating over angle to
computeE indirectly, we can manipulate Eq. 1 to yield an equation forE instead ofI.
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The diffusion equation and the material equation are

1

c

∂E

∂t
−∇ ·D∇E = σa (B(Tm)− E) , and (4)

∂um

∂t
= cσa (E −B(Tm)) + Qm, (5)

whereD is the diffusion coefficient.

There has been a fundamental change in the form of the equations; the transport
equation (Eq. 1) is hyperbolic, implying that particles (and energy) travels at finite speeds,
but the diffusion equation is parabolic, allowing the particles to travel at infinite speed; a
small change in one part of the problem immediately affects every other part of the
problem.

Flux Limited Diffusion
A large source of problems with the diffusion approximation comes from the fact it

allows|η| > 1, where

η ≡ F

cE
. (6)

This is completely unphysical; it implies that more energy can be moving than exists at a
point to begin with, or, in other words, the fluxF is not limited by the energy density. To
correct this problem, various forms of the diffusion coefficient,D, have been proposed in
order to limit the flux. Many different flux limiters have been proposed (Olson et al.,
2000; Su, 2001).

Flux limited diffusion is nearly as cheap as regular diffusion to compute, and much,
much cheaper than any of the higher order approximations. This accounts for its
extraordinary popularity and usefulness for the foreseeable future.

Discrete Ordinates

The discrete ordinates approximation assumes that particles can only travel along a
few particular directions, instead of the infinite number of directions allowed in Eq. 1.
These directions are generally chosen to be symmetric for any ninety degree rotation of
the coordinate system. Mathematically, this approximation assumes that the intensity is a
sum of delta functions,

I(r,Ω, ε, t) =
M∑

n=1

In(r, ε, t)δ(Ω−Ωn). (7)

If we insert this into Eq. 1, we find that we haveN different equations, one for each
direction (or ordinate)Ωn,

1

c

∂In

∂t
+ Ωn ·∇In = σa(B(Tm)− In) (8)
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wherewm is an integration weight. Each directionn is coupled to all the others through
the material equation. Eq. 8 can be differenced in an upwinded manner, leading to a very
efficient solution algorithms.

The discrete ordinates approximation in more than one spatial dimension has a
well-known defect called ray effects (Lewis and Miller, 1993; Miller and Reed, 1977).
Due to the discrete nature of the angular approximation, particles do not reach regions
where they otherwise would, sometimes producing large spatial oscillations in the energy
densityE.

TheN in the abbreviationSN comes from the quadrature order. In one dimension, the
quadrature order is equal to the number of directions in Eq. 7. In two and three
dimensions, the number of directions is is proportional toN2.

Spherical Harmonics

The intensity,I, can be expanded with a set of orthonormal functions called the
spherical harmonic functions,

I(r,Ω, ε, t) =
c√
4π

∞∑
l=0

l∑
m=−l

Em
l (r, ε, t)Y m

l (Ω) (9)

Em
l (r, ε, t) =

√
4π

c

∫
4π

Y
m

l (Ω)I(r,Ω, ε, t) dΩ , (10)

whereEm
l is the moment ofI with respect to the spherical harmonic functionY m

l . The
lowest order spherical harmonicY 0

0 = 1/
√

4π, so the multiply and divide by
√

4π in Eq. 9
and Eq. 10 is so thatE0

0 = E is the energy density. ThePN approximation arises when it
is then assumed that ifl ≥ N , then momentsEm

l = 0.

If we multiply Eq. 1 by eachY
m

l , the complex conjugate ofY m
l , and integrate over

angle, we get a series of equations for the moments of the intensityI. Each momentEm
l is

only coupled to the momentsEm′

l′ , wherel′ = l ± 1 andm′ = m + {−1, 0, 1}, for a total
of six other moments. This system of equations can be written in vector form as

1

c

∂E

∂t
+ Ax

∂E

∂x
+ Ay

∂E

∂y
+ Az

∂E

∂z
= −σtE + S, (11)

whereAi are the Jacobians with respect to theith direction describing the details of how
the moments are coupled,E is a vector of the momentsEm

l , andS is the source vector and
contains the scattering and material emission terms. The JacobiansAi are constant in
space and share a remarkable property—the eigenvalues of each matrix are identical.
Particles travel in waves through the system at a finite number of speeds determined by
these eigenvalues. The more moments, the more eigenvalues, the more different speeds,
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and the more accurate the solution can be. As forSN , the number of unknowns isN + 1
for one dimension, and is proportional toN2 in two and three dimensions.

The spherical harmonics approximation has a not-so-well-known defect called wave
effects in the time dependent case. In a vacuum, the system of equations is a wave
equation, and it is possible to get negative energy densitiesE = E0

0 . This is clearly
unphysical. Not only is this important for vacuum regions, but on short time scales,
interactions with the material become unimportant, and the equations again look like they
are in a vacuum. Even in time dependent problems without voids, it is possible to get a
negative solution for the energy densityE. The energy density in steady state problems is
always nonnegative.

Monte Carlo

The Boltzmann transport equation (Eq. 1) and approximations based on it solve for the
statistical average of energy densities. It treats the radiation as a continuous field; particles
do not really exist.

Monte Carlo, on the other hand, embraces the particle as its fundamental feature.
Individual photons are simulated from birth to death, modifying the material energy as
they travel. When a simulated photon is emitted from the material, it slightly decreases the
material energy. This photon travels through the model, occasionally interacting with the
material through scattering or absorption events. When the photon is absorbed, the
material energy is incremented a little bit.

All of the photon’s interactions, including its birth, have certain probabilities of
occurring that we can estimate. A pseudo random number generator is used in conjunction
with these probabilities to calculate when, where, and what kind of event occurred. Once
many particles have been simulated, a reasonable average for the energy density is
estimated.

The biggest disadvantage of Monte Carlo is that it is both processor time and memory
intensive; otherwise, it generally yields very accurate results, once enough particles have
been simulated. The estimated error in the Monte Carlo calculation is

Error =
α√
N

, (12)

whereα is some proportionality constant andN is the number of particles simulated. This
equation implies that in order to achieve a factor of 10 decrease in the estimated error, 100
times more particles need to be simulated. There are many variance reduction techniques
that can be used to dramatically reduce the proportionality constantα, but the general
scaling of error with the number particles simulated shown in Eq. 12 still applies. While
deterministic approximations (diffusion,SN , PN ) have a uniform error throughout the
system, the Monte Carlo simulation has the largest error where there are the fewest
particles. The deterministic approximations get equally good (or bad) results everywhere.
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In very rare instances, the simulation can produce a completely wrong result,
especially if something important happens where there are not very many photons.
Consider the case of a supercritical nuclear reactor behind a very thick neutron shield.
Since pure uranium is not an emitter of neutrons, there is nothing to initiate run-away
chain reaction in the reactor, except for the source of neutrons on the other side of the
shield. A Monte Carlo simulation might not ever transport a neutron to the reactor, giving
you a false sense of security. In the real world, there would be so many neutrons, the
probability that at least one will reach the reactor is very great.

A Few Test Problems

The problems in this section are designed to give some insight as to how the various
approximation perform relative to each other. Some of the problems are a test of neutral
particle transport; they are not coupled to the material energy at all. All of the calculations
are single-group in energy.

A Line Source in Two Dimensions

The most basic of all time dependent problems is a Green’s function problem. In two
dimensions this is a pulse of particles is emitted from a line source. In a linear system
such as ours without the material equation, solutions to all other time dependent problems
are just superpositions of solutions of different Green’s function problems. Only a vacuum
is considered here; there is no coupling with the material. This test problem is designed to
show the fundamental differences in each of the approximations. The defects in each of
the approximations that are exposed by this problem will also be seen in all of the other
test problems considered in later sections.

The energy density can be solved for analytically for most approximations. Solving
the transport equation, Eq. 1, for the intensityI, then integrating over angle to get the
energy densityE yields

E transport=
E0

2π

h(ct− r)

ct
√

c2t2 − r2
, (13)

whereE0 is the strength of the initial radiation pulse along the line andh(x) is the unit
step function. The generalPN solution is

EPN =
E0

π

∑
λi≥0

rili

[
δ(r − λit)√
λ2

i t
2 − r2

− λit h(λit− r)

(λ2
i t

2 − r2)3/2

]
, (14)

Note that there are regions where the solution forEPN is negative. This is an essential
defect of thePN equations, not a problem with the numerical implementation. The
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generalSN solution is

ESN = E0
∑

i

wiδ(‖x− ctΩi‖), (15)

where the sum overi denotes a sum over all angles. In contrast to the transport andPN

solutions, theSN solution is a function of bothx andy instead of a function ofr only.
This rotational dependence of the discrete ordinates equations is a factor in the problem
called ray effects. In the diffusion case, there is no solution. Eq. 4 is not well defined in a
vacuum. The nonlinear (and therefor much harder to solve analytically) flux limited
diffusion is defined in a vacuum, and the numeric solution is shown in Figure 1(e).

Figure 1 shows various numerical solutions for the line source problem. All
simulations are on a grid two centimeters square with a mesh spacing of about
dx = 0.01 cm. The Monte Carlo simulation in Figure 1(b) is very similar to the transport
solution in Figure 1(a), with the exception statistical noise in the solution. This simulation
used one hundred thousand particles. It is fairly easy to reduce this noise by simply
increasing the number of particles in the simulation. Figure 1(c) and Figure 1(d) show the
P1 andP5 solutions, respectively. TheP1 approximation has one wave speed at which
particles can travel, whereasP5 has three wave speeds. This can be seen in the rings
moving away from the center. Just behind each ring, there is a negative region in the
energy density. Figure 1(e) is not a mistake. The distribution spread out so fast that the
distribution is essentially flat and has a very small and nearly uniform value everywhere.
A discrete ordinatesS6 calculation is shown in Figure 1(f). Note that the particles are all
moving in delta functions away from the center.

The full transport equation is hyperbolic in nature, which means that particles and
information can only travel at finite speeds. All of the approximations except diffusion
respect this; all of the approximation in Figure 1 have semi-reasonable1 answers except
the diffusion. The key difference between spherical harmonics (PN ) and discrete ordinates
(SN ) is thatSN moves particles around along particular beams, giving rise to ray-effects;
while PN moves particles only with particular speeds, giving rise to wave-effects. The
Monte Carlo simulation looks the best, but if the problem would have been sensitive to
instabilities, the noise in the simulation could be problematic.

A Lattice Problem

This problem is a checkerboard of highly scattering and highly absorbing regions
loosely based on a small part of a nuclear reactor core. This is only a test of the transport
approximations; there is no material energy equation. When an absorption occurs, the
particles are simply removed from the system and do not heat it up.

1A “semi-reasonable” answer is one that converges to the correct solution as the order of the method is
increased; the results shown in Figures 1(c)-1(f) are by no means truly reasonable.
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(a) Analytic (b) Monte Carlo

(c) P1 (d) P5

(e) Flux Limited Diffusion (f) S6

Figure 1. Solutions to the pulsed line source problem. The color scale is linear, and the
color at each of the corners equals zero for all approximations except diffusion which uses
the same scale asS6. Colors more blue than the corners are negative.
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Figure 2. The lattice system. The blue and white regions are pure scattering regions where
σs = 1 cm−1. Additionally, the white region contains a source of particles. The red regions
are pure absorbers withσa = 10 cm−1. The particles are simply removed from the system
by the absorbers; there is no material equation.

The system for this problem, shown in Figure 2, is seven centimeters wide. The bulk
of the lattice is composed of a scattering material withσt = σs = 1 cm−1. There are
eleven absorbing regions whereσt = σa = 10 cm−1. At time zero, a source of strength
one is turned on in the central region of the system. All particles travel at a speed
c = 1 cm/s, and the problem is surrounded on all sides by vacuum boundaries.

Figure 3 shows the energy density 3.2 seconds after the source is turned on . using
diffusion, flux limited diffusion,P1, P7, S6, and implicit Monte Carlo approximations The
diffusion and the discrete ordinates calculations were done with ALEGRA (Brunner and
Mehlhorn, 2004). The implicit Monte Carlo calculation was done using the KULL IMC
package (Gentile et al., 1998; Gentile et al., 2005; Brunner et al., 2005) and used thirty six
million particles in half the problem domain, with a reflective boundary on the center line.
ThePN calculations were done with a research code of my own (Brunner, 2000; Brunner
and Holloway, 2005).

The particles should have had just enough time to reach the boundaries but not enough
to reach the corners. The diffusion calculation shown in Figure 3(a) is much too diffuse;
the particles have reached all parts of the system. Also, the central region does not have
enough particles. The flux limited diffusion result in Figure 3(b) is a vast improvement
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(a) Diffusion
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(b) Flux limited diffusion
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(c) P1

−6

−5

−4

−3

−2

−1

0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(d) P7
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(e)S6
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(f) Implicit Monte Carlo

Figure 3. The calculated energy density in the lattice problem 3.2 seconds after the source
was turned on. The color-map is proportional tolog10 E and limited to seven orders of
magnitude.
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Figure 4. The hohlraum. The blue regions are pure absorbers regions whereσa =
100 cm−1 andρCv = 5.0× 105 J/m3 K. The white region is a vacuum.

upon the diffusion calculation and captures the wave front well, but there are no beams of
particles leaking between the absorbers as seen in the Monte Carlo andP7 calculations.
The energy density computed usingP1, seen in Figure 3(c), has an artificial wave front of
particles traveling at speedv = 1/

√
3 cm/s. This is due to the fact that inP1, the particle

waves travel only at this speed. In theP7 calculation, the particle waves can travel at more
speeds, nearly eliminating these nonphysical wave fronts. Some wave-effects can also be
seen in theP7 calculation. Well defined beams of particles leaking between the corners of
the absorbing regions in both Figure 3(d) and Figure 3(f), theP7 and Monte Carlo
simulations. GenerallyP7 and Monte Carlo agree very well, especially for energy
densities above10−4. TheS6 calculation shown in Figure 3(e) has about the same number
of degrees of freedom as theP7 calculation, but the ray-effects are very dominant.

A Hohlraum

This hohlraum problem is loosely based on a typical hohlraum for the Z-machine at
Sandia. The radiation field is coupled to the the material energy through Eq. 2. Unlike a
real hohlraum, this problem is described in Cartesian coordinates. The system, shown in
Figure 4, is thirteen millimeters square with a thin wall of material around the outside
edge. There are two two millimeter openings on either left side of the hohlraum, and there
is a rectangular block of material in the center of the system. The material is a pure
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absorber withσa = 100 cm−1 andρCv = 5.0× 105 J/m3 K. The rest of the problem is a
vacuum. Some codes used for this problem could not model a pure void, so the heat
capacity was set extremely large,ρCv = 1.0× 1099 J/m3 K. The opacities were all set to
zero in the void. The initial material and radiation temperatures were set toT0 = 300 K. A
source boundary condition is applied along the entire left hand side. The source has a
temperature ofTsource= 3.5× 106 K.

Figure 5 shows the radiation temperature att1 = 3.93606× 10−11 s. Throughout the
discussion below, it is assumed that the Implicit Monte Carlo simulation is the most
accurate answer.

At the time depicted in Figure 5, photons have had nearly enough time to back wall of
the hohlraum. Most of the photons are still streaming from the openings; the walls of the
hohlraum have not started to heat up yet. Flux limited diffusion, Figure 5(b) has
incorrectly allowed photons to fill the entire system. TheP9 (Figure 5(c)) simulation has
wave-like solutions, which allow the photons to bend around the front wall. Notice the
black regions in theP9 solution in Figure 5(c); these represent negative solutions. While
too many photons are transported in the wave front around the back side of the wall,P9

“tries” to compensate by having waves of negative energy follow the positive waves that
should not be there. TheS8 calculation suffers badly from ray-effects. While these
ray-effects persist even at long times, the wave effects seen inP9 solution, Figure 5(c),
quickly travel through the system.

Conclusions

Simulating radiation transport is difficult; the equation we would really like to use, the
Boltzmann transport equation, is seven dimensional. This leads to a myriad of different
approximations to the transport equation.

Diffusion is by far the simplest approximation and works well when there is material
for the photons to diffuse through. The many varieties of flux limited diffusion all attempt
to improve upon plane diffusion while remaining fairly easy to solve. The errors with
diffusion theory all stem from the fact that the fundamental mathematical characteristic of
the transport has been changed from hyperbolic to parabolic. This change means that
photons are no longer constrained to travel at the speed of light. Some extremely fast and
robust numerical methods have been developed to numerically solve the diffusion theory
equations.

The spherical harmonics approximation takes moments of the Boltzmann equation to
arrive at a set of conservation laws for each of the moments. In a vacuum, this
approximation leads to the wave equations, and this causes the simulations to suffer from
wave-effects. Theoretically these effects become negligible when enough moments are
used, but in a vacuum, an infinite number of moments are needed to eliminate the
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(a) Implicit Monte Carlo (b) Flux limited diffusion

(c) P9 (d) S8

Figure 5. The radiation temperature in the hohlraum problem att = 3.93606× 10−11 s
after the source was turned on. The color-map is proportional toTr = (E/a)1/4. Black
regions indicate negative energy densities.
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wave-effects.

The discrete ordinates approximation moves photons only along a particular set of
directions. Many people have studied this approximation, making its problems well
understood. Many very efficient algorithms have been developed to solve the discrete
ordinates equations. Unfortunately, ray-effects, the most well-known defect of discrete
ordinates, can be seen in many simulations.

Implicit Monte Carlo can treat photons exactly, but a given simulation cannot come
close to simulating as many particles as there are in all physical systems. This leads to
statistical noise, which is this method’s largest weakness. In order to reduce the amount of
noise in a given simulation by a factor of ten, one hundred times more particles must be
simulated. In time-dependent problems, not only does this increase run-time by a factor of
one hundred, but memory usage also increases by the same factor. The resulting material
energy calculated in an Monte Carlo simulation, however, is much less noisy than the
radiation field, and it is usually the material energy that is more important for simulations.

For the test problems in this paper, the Monte Carlo generally gave the best results.
Flux limited diffusion gave the best results normalized by run time. Spherical harmonics
and discrete ordinates both have some significant problems in optically thin materials, but
spherical harmonics appears to perform slightly better in highly heterogeneous material
such as the lattice problem.
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